

Impact Factor(JCC): 1.3268 - This article can be downloaded from www.impactjournals.us

IMPACT: International Journal of Research in
Engineering & Technology (IMPACT: IJRET)
ISSN(E): 2321-8843; ISSN(P): 2347-4599
Vol. 2, Issue 3, Mar 2014, 129-140
© Impact Journals

TO FIND NEW EVASION TECHNIQUES ON NETWORK INTRUSION

DETECTION SYSTEM

RUTUJA R. PATIL 1 & P. R. DEVALE 2
1Research Scholar, Department of Information Technology, Bharati Vidyapeeth Deemed University,

College of Engineering, Pune, Maharashtra, India
2Professor, Department of Information Technology, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India

ABSTRACT

These days, Signature based Network Intrusion Detection Systems (NIDS), which apply a set of rules to identify

hostile traffic in network segments are quickly updated in order to prevent systems against new attacks. The objective of an

attacker is to find out new evasion techniques to stay unseen. Unfortunately, majority of the existing techniques are based

on the ambiguities of the network protocols. As a result of the emergence of the new evasion techniques, NIDS system

may fail to give the correct results. The central idea of our paper is to develop a network based intrusion detection system

based on Apriori algorithm and other approaches for attack detection and test the input thus produced by the

Apriori algorithm with the well known snort intrusion detection system, once candidate sets for detecting different attacks

are generated. These candidates in turn will be passed as inputs to the snort intrusion detection system for detecting

different attacks.

KEYWORDS: NIDS, Evasion, Apriori Algorithm, AdaBoost Algorithm, Snort

INTRODUCTION

OVERVIEW OF NETWORK INTRUSION DETECTION SYSTEM

Information Technologies have become a critical component of global economy in the last few years.

Their protection against hostile actions determines how fast information society and communications will evolve.

Security measures are normally classified as: preventive, detective, corrective and recovery. The most convenient are the

first, but their cost is the highest and they do not assure to disable the risk totally, so it is preferable to distribute resources

over all the techniques. Thus, a called Perimeter Defense should be performed, in which different protection barriers

(preventive, detective, corrective and recovery) must be placed into the IT systems. There is an increasing public demand

to develop systems that can guard against different attacks that are attempted by hackers.

One security system which falls into this category is the Intrusion Detection System (IDS). Intrusion Detection

Systems are software or hardware tools that automatically scan and monitor events that take place in a computer or a

network, looking for evidence of intrusion [1] And Network Intrusion Detection Systems (NIDS) just analyze network

traffic captured on the network segment where they are installed. These systems can be broadly classified into two major

categories depending on the analysis techniques of IDS these are mainly:

• Anomaly-Based IDS

Anomaly-based IDS works on a performance baseline based on normal network traffic evaluations.

130 Rutuja R. Patil & P. R. Devale

Index Copernicus Value: 3.0 - Articles can be sent to editor@impactjournals.us

It samples current network traffic activity to this baseline in order to detect whether or not it is within baseline parameters.

Data mining techniques can be used for intrusion detection efficiently.

• Signature-Based IDS

Network traffic is examined for preconfigured and predetermined attack patterns known as signatures. It is widely

available, it uses known patterns as it is easy to implement but they cannot detect attacks for which it has no signature and

they are also prone to false positives since they are commonly based on regular expressions and string matching.

Since they are based on pattern match, signatures usually don't work that great against attacks with self-modifying

behavior. Signature based NIDS are effective at detecting attacks they are prepared for (they may fail to detect zero-day

attacks until their signatures become updated). This situation causes attackers to focus their efforts in finding evasions over

the signatures of these systems.

An evasion can be defined as any technique that modifies a detectable attack into any other form in order to avoid

being detected. The overall idea is to perform some changes to cause that the NIDS does not process the entire attack

packet, remaining so undetected. NIDS normally are, in conjunction with firewalls, one of the first objectives to deal with

when someone is trying to attack a system. That implies that attackers try to develop sophisticated techniques to avoid

being detected. In general, NIDS do not give real time information about what is happening, but they log alerts.

Human security auditors are then who have to analyze those alerts searching for hostile activity. If the NIDS gives

erroneous information, auditor can be distracted and would not be able to focus their efforts in the real attack.

Currently, proposed evasive techniques are based in ambiguities present in transport and network layer protocols

(mainly TCP and IP) [1]. Those ambiguities provoke that different systems interpret the protocols in a different way.

An attacker attempting to evade NIDS detection can modify the transmitted packets in such a way that lead into a situation

where a system has different information than another one. When using NIDS, an evasion can appear if the NIDS and the

monitored endpoint interpret protocols in a different way, so the information processed is different in both systems.

Researching in an evasive techniques is, along with the discovery and detection of new kind of attacks, the

principal tool to improve the effectiveness of the NIDS. Currently, the fast adaptation of the NIDS against new attacks

provokes that attackers try to perform evasive techniques (more stealthy and hard to detect) instead of directly exploiting

those new attacks. Thus, a security administrator is not aware to have been evaded until posterior forensic analysis of the

compromised system, when probably the damage has been done. That is the main motivation of our work, whose

primordial objective is to discover new forms of NIDS evasive techniques.

IDEA OF PROJECT

In this paper work we focus on misuse detection. In these types of techniques generally attack signatures are

collected and stored in a database in the same way as virus protection software does in order to detect the related attacks.

Signature based NIDS are effective at detecting attacks for what they are prepared. Firewalls do not normally block

packets, but make aware about the intrusion alarm. This situation causes attackers to focus their efforts in finding evasions

over the signatures of these systems. The overall idea of intruder is to perform some changes to cause evasions that the

NIDS does not process the entire attack packet, which remains undetected. An evasion succeeds if the processing of the

packets generates a different representation of the raw data in the NIDS and in the end systems. Data contained in TCP

To Find New Evasion Techniques on Network Intrusion Detection System 131

Impact Factor(JCC): 1.3268 - This article can be downloaded from www.impactjournals.us

segments can encapsulate some attacks, but if the NIDS processes those segments are processed differently from the

endpoint, it will not be able to detect those attacks.

The aim of this paper is to look for new evasive techniques by analyzing NIDS behavior. In this method first we

build NIDS using C4.5 algorithm. Publicly available dataset KDD-99 is given to it. AdaBoost ALGORITHM for

supervised learning where labeling of dataset is done as normal or attack is applied. Modified Apriori algorithm generates

rules which are checked on snort for evasion. We use other methods like Genetic Algorithm to compare our results.

ARCHITECTURE OF THE SYSTEM

In this method, publicly available dataset KDD- 99 which contain information about attacks is used. It is given as

input to C4.5 algorithm using Weka tool. Weka tool is implementation of various classifying and clustering algorithm.

C4.5 algorithm gives output as a tree.

After applying adaboost algorithm on output of C4 5, that contains steps like data labeling, training, testing, where

Data labeling will contain identification normal and attack packets. +1 meaning attack packet and -1 meaning normal

packet. Training phase will contain initialization of parameters. Testing phase will contain real identification attack packets

and classifying each detected attack under its category (Such as Dos attack, probe attack, U2R attack, R2Lattack).

Detection result and false alarm rate will then get displayed.

Modified apriori algorithm, which contain process of creation of rules for detecting attacks is then used.

After creating these rules we pass these rules to snort. Snort is an open source IDS. Now this method will detect the

packets in the network. Also it evades the packets by changing the rules. Detection output will get stored in a text file.

The workflow is depicted in the following block diagram.

Figure 1: Architecture of NIDS System

INTRUSION DETECTION DATA

Attack types fall into four main categories namely

• Probing: Surveillance and other probing

132 Rutuja R. Patil & P. R. Devale

Index Copernicus Value: 3.0 - Articles can be sent to editor@impactjournals.us

• DoS: Denial of service

• U2S: Unauthorized access to local super user (root) privileges and

• R2L: Unauthorized access from a remote machine.

Probing

Probing is a class of attacks where an attacker scans a network to gather information or find known

vulnerabilities. An attacker with a map of machines and services that are available on a network can use the information to

look for exploits. There are different types of probes: some of them abuse the computer’s legitimate features; some of them

use social engineering techniques. This class of attacks is the most commonly heard and requires very little technical

expertise.

Denial of Service Attacks

Denial of Service (DoS) is a class of attacks where an attacker makes some computing or memory resource too

busy or too full to handle legitimate requests, thus denying legitimate users access to a machine. There are different ways

to launch DoS attacks: by abusing the computers legitimate features; by targeting the implementations bugs;

or by exploiting the system’s misconfigurations. DoS attacks are classified based on the services that an attacker renders

unavailable to legitimate users.

User to Root Attacks

User to root (U2R) exploits are a class of attacks where an attacker starts out with access to a normal user account

on the system and is able to exploit vulnerability to gain root access to the system. Most common exploits in this class of

attacks are regular buffer overflows, which are caused by regular programming mistakes and environment assumptions.

Remote to User Attacks

A remote to user (R2L) attack is a class of attacks where an attacker sends packets to a machine over a network,

then exploits machine’s vulnerability to illegally gain local access as a user. There are different types of R2U attacks;

the most common attack in this class is done using social engineering.

INTRUSION DETECTION DATASETS

KDD Cup’99 Data Set

The data set used to perform the experiment is taken from KDD Cup ’99[8][9], which is widely accepted as a

benchmark dataset and referred by many researchers. “10% of KDD Cup’99” from KDD Cup ’99 data set was chosen to

evaluate rules and testing data sets to detect intrusion. The entire KDD Cup ’99 data set contains 41 features.

Connections are labeled as normal or attacks fall into 4 main categories.

• DOS: Denial Of Service

• Probe: E.g. Port scanning

• U2R: Unauthorized access to root privileges

• R2L: Unauthorized remote login to machine.

To Find New Evasion Techniques on Network Intrusion Detection System 133

Impact Factor(JCC): 1.3268 - This article can be downloaded from www.impactjournals.us

In this dataset there are 3 groups of features: Basic, content based, time based features.

o Training set Consists 5 million connections

o 10% training set - 494,021 connections

o Test set have - 311,029 connections

o Test data has attack types that are not present in the training data. Problem is more realistic

o Train set contains 22 attack types

o Test data contains additional 17 new attack types that belong to one of four main categories.

Weka

Weka is a collection of machine learning algorithms for data mining tasks. Weka contains tools for data

pre-processing, classification, regression, clustering, association rules, and visualization. It is also well-suited for

developing new machine learning schemes. WEKA consists of Explorer, Experimenter, Knowledge flow,

Simple Command Line Interface, Java interface.

ALGORITHMS USED

C4.5 Algorithm

C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. C4.5 is an extension of

Quinlan's earlier ID3 algorithm. The decision trees generated by C4.5 can be used for classification, and for this reason,

C4.5 is often referred to as a statistical classifier.

C4.5 builds decision trees from a set of training data in the same way as ID3, using the concept of information

entropy. The training data is a set S=s1,s2,.. of already classified samples. Each sample si=x1,x2,.. is a vector where

x1,x2,.. represent attributes or features of the sample. The training data is augmented with a vector C=c1,c2,..

Where c1,c2,.. represent the class to which each sample belongs.

At each node of the tree, C4.5 chooses one attribute of the data that most effectively splits its set of samples into

subsets enriched in one class or the other. Its criterion is the normalized information gain (difference in entropy) that

results from choosing an attribute for splitting the data. The attribute with the highest normalized information gain is

chosen to make the decision. The C4.5 algorithm then recourses on the smaller sub lists

This algorithm has a few base cases.

• All the samples in the list belong to the same class. When this happens, it simply creates a leaf node for the

decision tree saying to choose that class.

• None of the features provide any information gain. In this case, C4.5 creates a decision node higher up the tree

using the expected value of the class.

• Instance of previously-unseen class encountered. Again, C4.5 creates a decision node higher up the tree using the

expected value.

134 Rutuja R. Patil & P. R. Devale

Index Copernicus Value: 3.0 - Articles can be sent to editor@impactjournals.us

ADABOOST ALGORITHM

AdaBoost, short for Adaptive Boosting, is a machine learning algorithm, formulated by Yoav Freund and

Robert Schapire. It is a meta-algorithm, and can be used in conjunction with many other learning algorithms to improve

their performance. AdaBoost is adaptive in the sense that subsequent classifiers built are tweaked in favor of those

instances misclassified by previous classifiers. AdaBoost is sensitive to noisy data and outliers. In some problems,

however, it can be less susceptible to the overfitting problem than most learning algorithms.

The classifiers it uses can be weak (i.e., display a substantial error rate), but as long as their performance is not

random (resulting in an error rate of 0.5 for binary classification), they will improve the final model. Even classifiers with

an error rate higher than would be expected from a random classifier will be useful, since they will have negative

coefficients in the final linear combination of classifiers and hence behave like their inverses.

AdaBoost generates and calls a new weak classifier in each of a series of rounds t=1,.., T. For each call, a

distribution of weights Dt is updated that indicates the importance of examples in the data set for the classification.

On each round, the weights of each incorrectly classified example are increased, and the weights of each correctly

classified example are decreased, so the new classifier focuses on the examples which have so far eluded correct

classification.

THE APRIORI ALGORITHM

Basics

The Apriori Algorithm is an influential algorithm for mining frequent itemsets for Boolean association rules.

Key Concepts

Frequent Item Sets: The sets of item which has minimum support.

Apriori Property: Any subset of frequent itemset must be frequent.

Join Operation: To find Lk, a set of candidate k-itemsets is generated by joining Lk-1 with itself.

The Apriori Algorithm in a Nutshell.

Find the Frequent Item Sets: the sets of items that have minimum support.

A subset of a frequent item set must also be a frequent item set.

i.e., if {AB} is a frequent item set, both {A} and {B} should be a frequent item set.

Iteratively find frequent item sets with cardinality from 1 to k (k-item set).

Use the frequent item sets to generate association rules.

LITERATURE REVIEW

With respect to our paper topic “Network Intrusion detection Evading System” we have gone through following

documentation of the work done in this field in the past. Some of the highlighted work is presented in the subsection

below.

To Find New Evasion Techniques on Network Intrusion Detection System 135

Impact Factor(JCC): 1.3268 - This article can be downloaded from www.impactjournals.us

INSERTION, EVASION AND DENIAL OF SERVICE: ELUDING N ETWORK INTRUSION DETECTION

SYSTEM

The concept of evasion was first proposed by Ptacek and Newsham [2]. In this seminal paper, the authors

highlighted the existence of some ambiguities in the TCP and IP protocols, which allow different systems to implement

them in a different way. An evasion succeeds when NIDS ignore packets which are going to be processed on the endpoints

or vice versa. For example, TCP does not specify what should be done with TCP packets containing an erroneous

checksum field. Implementations of the TCP protocol can ignore, accept or reject those packets. As shown in Figure 1, an

evasion could succeed if the NIDS implementation of the TCP protocol differs from the endpoint implementation.

Figure 2: Example of Evasion in this Example, the NIDS Preprocessor Accepts
the Packet Containing a Bad Checksum Field, While the Endpoint Does Not,

So the Final Structure after the Preprocessing Phase will be Different

FRAGROUTE

Fragroute intercepts, modifies, and rewrites egress traffic destined for a specified host, implementing most of the

attacks (D. Son (2002) Fragroute [Online]. http://www monkey.org/~dugsong/fragroute/) [4]. It features a simple ruleset

language to delay, duplicate, drop, fragment, overlap, print, reorder, segment, source-route, or otherwise monkey with all

outbound packets destined for a target host, with minimal support for randomized or probabilistic behavior. This tool was

written in good faith to aid in the testing of network intrusion detection systems, firewalls, and basic TCP/IP stack

behavior.

A TOOL FOR OFFLINE AND LIVE TESTING OF EVASION RESI LIENCE IN NETWORK INTRUSION

DETECTION SYSTEMS

In this paper [5] a framework is created for testing the degree to which network intrusion detection systems

(NIDS) detect and handle evasion attacks. This prototype system, idsprobe, takes as input a packet trace and from it

constructs a configurable set of variant traces that introduce different forms of ambiguities that can lead to evasions.

Test harness then uses these variant traces in either an offline configuration, in which the NIDS under test reads traffic

from the traces directly, or a live setup, in which author employs replay technology to feed traffic over a physical network

past a NIDS reading directly from a network interface, and to potentially live victim machines. Summary reports of the

differences in NIDS output tell the analyst to what degree the NIDS's results vary, reflecting sensitivities to

(and possible detections of) different evasions

PROTOCOL SCRUBBING

This paper [6] present design and implementation of protocol scrubbers which are active interposed mechanism

for transparently removing packets from protocol layers in real-time. The contribution of this work is: the identification of

136 Rutuja R. Patil & P. R. Devale

Index Copernicus Value: 3.0 - Articles can be sent to editor@impactjournals.us

transport scrubbing as a mechanism that enables passive NID to operate correctly, the design and implementation of high

performance half-duplex TCP/IP scrubber, and the creation of TCP/IP stack fingerprint scrubber. The transport scrubber

converts ambiguous network flows in well-behaved flows that are interpreted identically at all downstream endpoints.

The fingerprint scrubber removes clues about the identity of an end host’s operation system to successfully and completely

block the known scans.

DETECTING EVASION ATTACKS AT HIGH SPEEDS WITHOUT RE ASSEMBLY

This paper [7] suggests breaking with signature using an approach called Split-Detect. Author focus on the

simplest form of signature, an exact string match, and start by splitting the signature into pieces. By doing so the attacker is

either forced to include at least one piece completely in a packet, or to display potentially abnormal behavior

(e.g., several small TCP fragments or out-of-order packets) that cause the attacker’s flow to be diverted to a slow path.

Author proved that under certain assumptions this scheme can detect all byte-string evasions. It also show using real traces

that the processing and storage requirements of this scheme can be 10% of that required by a conventional IPS, allowing

reasonable cost implementations at 20 Gbps. While the changes required by Split-Detect may be a barrier to adoption, this

paper exposes the assumptions that must be changed to avoid normalization and reassembly in the fast path

ACTIVE MAPPING: RESISTING NIDS EVASION WITHOUT ALTE RING TRAFFIC

A critical problem faced by a Network Intrusion Detection System (NIDS) is that of ambiguity. The NIDS cannot

always determine what traffic reaches a given host nor how that host will interpret the traffic, and attackers may exploit

this ambiguity to avoid detection or cause misleading alarms. This paper [8] present a lightweight solution, Active

Mapping, which eliminates TCP/IP-based ambiguity in a NIDS' analysis with minimal runtime cost. Active Mapping

efficiently builds profiles of the network topology and the TCP/IP policies of hosts on the network; a NIDS may then use

the host profiles to disambiguate the interpretation of the network traffic on a per-host basis. Active Mapping avoids the

semantic and performance problems of traffic normalization, in which traffic streams are modified to remove ambiguities.

Author developed a prototype implementation of Active Mapping and modified a NIDS to use the Active

Mapping-generated profile database in our tests. Author found wide variation across operating systems' TCP/IP stack

policies in real-world tests (about 6,700 hosts), underscoring the need for this sort of disambiguation.

REVERSE ENGINEERING OF NETWORK SIGNATURES

This paper [9] describes a reverse engineering process and a reverse engineering tool that are used to analyze the

way signatures are matched by network-based intrusion detection systems. The reverse engineering process involves the

dynamic analysis of the sensor binary when it is stimulated with legitimate and malicious input. The analysis results are

then used to guide the selection of appropriate evasion techniques from a set of alternatives. The results of the analysis are

used to either generate variations of attacks that evade detection or produce non-malicious traffic that over-stimulates the

sensor. This shows that security through obscurity does not work. That is, keeping the signatures secret does not

necessarily increase the resistance of a system to evasion and over-stimulation attacks.

SNORT – LIGHTWEIGHT INTRUSION DETECTION FOR NETWORK S

Snort fills an important ``ecological niche'' in the realm of network security: a cross-platform, lightweight network

intrusion detection tool that can be deployed to monitor small TCP/IP networks and detect a wide variety of suspicious

To Find New Evasion Techniques on Network Intrusion Detection System 137

Impact Factor(JCC): 1.3268 - This article can be downloaded from www.impactjournals.us

network traffic as well as outright attacks. It can provide administrators with enough data to make informed decisions on

the proper course of action in the face of suspicious activity. Snort can also be deployed rapidly to fill potential holes in a

network's security coverage, such as when a new attack emerges and commercial security vendors are slow to release new

attack recognition signatures. This paper [10] discusses the background of Snort and its rules-based traffic collection

engine, as well as new and different applications where it can be very useful as a part of an integrated network security

infrastructure.

EVOLVING HIGH-SPEED, EASY-TO-UNDERSTAND NETWORK INT RUSION DETECTION RULES

WITH GENETIC PROGRAMMING

An ever-present problem in intrusion detection technology is how to construct the patterns of

(good, bad or anomalous) behavior upon which an engine have to make decisions regarding the nature of the activity

observed in a system. This has traditionally been one of the central areas of research in the field, and most of the solutions

proposed so far have relied in one way or another upon some form of data mining–with the exception, of course, of

human-constructed patterns. In this paper [11], we explore the use of Genetic Programming (GP) for such a purpose.

Here author shows that GP can offer at least two advantages over other classical mechanisms: it can produce very

lightweight detection rules (something of extreme importance for high speed networks or resource-constrained

applications) and the simplicity of the patterns generated allows to easily understanding the semantics of the underlying

attack.

MODELING INTRUSION DETECTION SYSTEMS USING LINEAR G ENETIC PROGRAMMING

APPROACH

This paper [12] investigates the suitability of linear genetic programming (LGP) technique to model efficient

intrusion detection systems, while comparing its performance with artificial neural networks and support vector machines.

Due to increasing incidents of cyber attacks and, building effective intrusion detection systems (IDSs) are essential for

protecting information systems security, and yet it remains an elusive goal and a great challenge. We also investigate key

feature identification for building efficient and effective IDSs. Through a variety of comparative experiments, it is found

that, with appropriately chosen population size, program size, crossover rate and mutation rate, linear genetic programs

could outperform support vector machines and neural networks in terms of detection accuracy. Using key features gives

notable performance in terms of detection accuracies. However the difference in accuracy tends to be small in a few cases.

MODELING INTRUSION DETECTION SYSTEM USING HYBRID IN TELLIGENT SYSTEMS

This paper [13] presents two hybrid approaches for modeling IDS. Decision trees (DT) and support vector

machines (SVM) are combined as a hierarchical hybrid intelligent system model (DT–SVM) and an ensemble approach

combining the base classifiers. The hybrid intrusion detection model combines the individual base classifiers and other

hybrid machine learning paradigms to maximize detection accuracy and minimize computational complexity.

Empirical results illustrate that the proposed hybrid systems provide more accurate intrusion detection systems.

A FAST APRIORI IMPLEMENTATION

The efficiency of frequent item set mining algorithms is determined mainly by three factors: the way candidates

are generated, the data structure that is used and the implementation details. Most papers focus on the first factor,

138 Rutuja R. Patil & P. R. Devale

Index Copernicus Value: 3.0 - Articles can be sent to editor@impactjournals.us

some describe the underlying data structures, but implementation details are almost always neglected. This paper shows

that the effect of implementation can be more important than the selection of the algorithm. Ideas that seem to be quite

promising may turn out to be ineffective if we descend to the implementation level. Author theoretically and

experimentally analyzes APRIORI which is the most established algorithm for frequent itemset mining.

Several implementations of the algorithm have been put forward in the last decade. Although they are implementations of

the very same algorithm, they display large differences in running time and memory need. This paper [14] describes an

implementation of APRIORI. Author analyzes, theoretically and experimentally, the principal data structure of our

solution. This data structure is the main factor in the efficiency of implementation. Author also presents a simple

modification of APRIORI that appears to be faster than the original algorithm.

CONCLUSIONS

This paper provides a new method that efficiently improves the task of finding out new forms of evasion by

analysing NIDS behaviour thus allowing system administrators to be warned before the attackers could exploit them.

The aim of evasion is not to break the NIDS system but to understand and learn different ways of evasion of system and

make system more robust. Here in this paper we present a proof of concept showing how to perform detection and evasion

in NIDS using publicly available datasets KDD-99.

REFERENCES

1. R. Bace and P. Mell, "NIST Special Publication on Intrusion Detection Systems", 800-31, 2001.

2. T. H. Ptacek and T. N. Newsham, "Insertion, evasion and denial of service: Eluding network intrusion detection,"

Technical report, 1998.

3. S. Pastrana, A. Orfila, A. Ribagorda, “A Functional Framework to Evade Network IDS”, IEEE xplore, System

Sciences (HICSS), 2011 44th Hawaii International Conference.

4. D. Son. (2002) Fragroute. [Online] http://www monkey.org/~dugsong/fragroute/

5. L. Juan, C. Kreibich, C.-H. Lin, and V. Paxson, "A Tool for Offline and Live Testing of Evasion Resilience in

Network Intrusion Detection Systems," in DIMVA '08: Proceedings of the 5th international conference on

Detection of Intrusions and Malware, and Vulnerability Assessment, Paris, France, 2008, pp. 267-278.

6. D. Watson, M. Smart, R. G. Malan, and F. Jahanian, "Protocol scrubbing: network security through transparent

flow modification," IEEE/ACM Transactions on Networking, vol. 12, pp. 261--273, 2004.

7. G. Varghese, J. A. Fingerhut, and F. Bonomi, "Detecting evasion attacks at high speeds without reassembly,"

in SIGCOMM '06: Proceedings of the 2006 conference on Applications, technologies, architectures, and protocols

for computer communications, Pisa, Italy, 2006, pp. 327--338.

8. U. Shankar and V. Paxson, "Active Mapping: Resisting NIDS Evasion without Altering Traffic," in SP '03:

Proceedings of the 2003 IEEE Symposium on Security and Privacy, Washington, DC, USA, 2003, p. 44.

9. D. Mutz, C. Kruegel, W. Robertson, G. Vigna, and R. A. Kemmerer ''Reverse Engineering of Network

Signatures'', in Proceedings of the AusCERT Asia Pacific Information Technology Security Conference,

Gold, 2005.

To Find New Evasion Techniques on Network Intrusion Detection System 139

Impact Factor(JCC): 1.3268 - This article can be downloaded from www.impactjournals.us

10. M. Roesch, "Snort - Lightweight Intrusion Detection for Networks," in LISA '99: Proceedings of the 13th

USENIX conference on System administration, Seattle, Washington, 1999, pp. 229-238.

11. A. Orfila, A. Ribagorda, “Evolving High-Speed, Easy-to-Understand Network Intrusion Detection Rules with

Genetic Programming”, Springer-Verlag Berlin Heidelberg, 2009.

12. S. Mukkamala, A. Sung, and A. Abrham, "Modeling intrusion detection systems using linear genetic

programming approach," in IEA/AIE'2004: Proceedings of the 17th international conference on Innovations in

applied artificial intelligence, Ottawa, 2004, pp. 633-642.

13. S. Peddabachigaria, A. Abraham, “Modeling intrusion detection system using hybrid intelligent systems”,

Journal of Network and Computer Applications.

14. Ferenc Bodon, “A fast APRIORI implementation”, Informatics Laboratory, Computer and Automation Research

Institute.

15. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten, ''The WEKA Data Mining Software:

An Update'', in SIGKDD Explorations, Volume 11, Issue 1, 2009.

16. Pallavi Dhade, T.J. Parvat, “To Evade Deep Packet Inspection in NIDS Using Frequent Element Pattern

Matching”, IJEIT, Volume 2, Issue 1, July 2012.

